Домой Головная боль Общая характеристика элементов 7 а группы. Седьмая группа элементов периодической системы

Общая характеристика элементов 7 а группы. Седьмая группа элементов периодической системы

3s 3p 3d
1s
2s 2p


Валентность в данном состоянии = VII

Таким образом, для хлора характерны валентности: I, III, V, VII

Аналогичные валентности и степени окисления характерны для Br и I.

Для F, в отличие от остальных галогенов, характерны только степени окисления -1, 0 и валентность I, так как у него самая высокая электроотрицательность среди всех элементов и нет свободных орбиталей на последнем уровне.

Физические свойства простых веществ:

В качестве простых веществ все галогены встречаются в виде молекул Э 2 (F 2 , Cl 2 , Br 2 , I 2). В молекуле атомы соединены ковалентной неполярной химической связью.

Образуют молекулярные кристаллические решетки.

Встречаемость в природе:

F 2 , Cl 2 , Br 2 , I 2 практически не встречаются из-за своей высокой химической активности.

В основном галогены в природе встречаются в составе солей:

NaCl – каменная соль (после очистки – поваренная соль)

KCl ∙ NaCl - сильвинит

KCl ∙ MgCl 2 - карналлит

Cl входит в состав хлорофилла растений.

Получение (на примере хлора):

1. В промышленности – электролизом раствора или расплава NaCl.

а). Расплав: 2NaCl → 2Na + Cl 2

на катоде: Na + +1e → Na 0

на аноде: 2Cl - - 2e → Cl 2 0

б). Раствор: 2NaCl + 2H 2 O → H 2 + Cl 2 + 2NaOH

на катоде: 2H 2 O + 2e → H 2 0 + 2OH -

на аноде: 2Cl - - 2e → Cl 2 0

2. В лаборатории – реакцией соляной кислоты с сильными окислителями:

а). MnO 2 + 4HCl = MnCl 2 + Cl 2 + 2H 2 O

б). 2KMnO 4(крист.) + 16HCl (конц.) = 5Cl 2 + 2MnCl 2 + 2KCl + 8H 2 O

в). KClO 3 + 6HCl (конц.) = 3Cl 2 + KCl + 3H 2 O

бертолетова соль

Химические свойства галогенов (на примере хлора):

Все галогены являются сильными окислителями!

1). Взаимодействие с простыми веществами:

а). С металлами:

2Na + Cl 2 = 2NaCl

2Fe + 3Cl 2 = 2FeCl 3

Cu + Cl 2 = CuCl 2

б). С неметаллами:

H 2 + Cl 2 = 2HCl (реакция идет на свету)

2P + 3Cl 2 = 2PCl 3 (реакция идет при нагревании)

хлорид фосфора (III)

2P + 5Cl 2 = 2PCl 5 (реакция идет при нагревании)

хлорид фосфора (V)

Si + 2Cl 2 = SiCl 4 (реакция идет при нагревании)

хлорид кремния (IV)

С азотом и кислородом хлор и другие галогены не взаимодействуют, так как и те, и другие в реакциях проявляют окислительные свойства, поэтому оксиды галогенов можно получить только косвенным путем.

2). Взаимодействие со сложными веществами:

а). С водой:

В направлении F 2 → Cl 2 → Br 2 → I 2 растворимость в воде падает.

Хлор растворим в воде, но плохо (2,5 объема в 1 объеме воды при 20ºС). Раствор хлора в воде называется «хлорная вода». При этом идет реакция:

Cl 2 + H 2 O = HCl + HClO (реакция диспропорционирования)

HClO → HCl +

атомарный кислород

За счет образования атомарного кислорода растворенный в воде хлор обладает высоким окисляющим, отбеливающим (в том числе обесцвечивает органические красители) и обеззараживающим действием.

Фтор не может иметь положительных степеней окисления, поэтому с водой не диспропорционирует:

2F 2 + 2H 2 O = 4HF + O 2

I 2 плохо растворим в воде и практически не взаимодействует с ней, но хорошо растворим в органических растворителях (спирте, хлороформе), а также KI. Раствор I 2 в KI называется «раствор Люголя».

б). С щелочами диспропорционируют:

на холоду: Cl 2 + 2KOH = KCl + KClO + H 2 O

при нагревании: 3Cl 2 + 6KOH = 5KCl + KClO 3 + 3H 2 O

в). С растворами солей галогеноводородных кислот (находящихся ниже по группе):

Cl 2 + 2NaBr = 2NaCl + Br 2

Cl 2 + 2NaI = 2NaCl + I 2

Но! F 2 + NaCl ≠ , так как F 2 в первую очередь взаимодействует с водой.

Подобным образом идут реакции с галогеноводородами: Cl 2 + 2HI = I 2 + 2HCl

Качественная реакция на I 2:

I 2 + крахмал = темно синее окрашивание

Образующееся соединение при нагревании разрушается и происходит обесцвечивание реакционной смеси. После охлаждения темно синяя окраска снова возвращается, так как соединение образуется заново.

Галогеноводороды

Получение (на примере HCl):

1. В промышленности – из простых веществ:

H 2 + Cl 2 = 2HCl

2. В лаборатории – из солей:

NaCl (крист.) + H 2 SO 4(конц.) = HCl + NaHSO 4 (аналогично HF)

Но: 2NaBr (тв.) + H 2 SO 4(конц.) = Br 2 + 2NaHSO 4 (аналогично HI, так как HBr и HI сильные восстановители)

Химические свойства (на примере HCl):

Галогеноводороды в обычных условиях мало реакционноспособны, зато их растворы в воде (кислоты) химически очень активны.

Соляная, бромоводородная и йодоводородная кислоты – сильные электролиты, а фтороводородная – слабый электролит.

Соляная кислота HCl – бесцветная жидкость, летучая, максимальная концентрация 35 – 39%, во влажном воздухе дымит.

1. Взаимодействие с металлами, стоящими в ряду напряжений до водорода!:

Fe + HCl = FeCl 2 + H 2

а). 2Na + 2H 2 O = 2NaOH + H 2

б). NaOH + HCl = NaCl + H 2 O

2. Взаимодействие с основными и амфотерными оксидами:

MgO + 2HCl = MgCl 2 + H 2 O

CuO + 2HCl = CuCl 2 + H 2 O (при нагревании)

ZnO + 2HCl = ZnCl 2 + H 2 O

3. Взаимодействие с основаниями и амфотерными гидроксидами:

NaOH + HCl = NaCl + H 2 O

Al(OH) 3 + 3HCl = AlCl 3 + 3H 2 O

4. Взаимодействие с солями (если образуется осадок, газ или слабый электролит):

Na 2 CO 3 + 2HCl = 2NaCl + CO 2 + H 2 O

FeS + 2HCl = FeCl 2 + H 2 S

Качественные реакции на хлорид-, бромид- и йодид-ионы:

а). NaCl + AgNO 3 = AgCl↓ + HNO 3

белый творожистый

Осадок растворяется в растворе аммиака:

AgCl + 2NH 4 OH = Cl + 2H 2 O

При добавлении кислоты снова выпадает белый творожистый осадок:

Cl + 2HNO 3 = AgCl↓ + 2NH 4 NO 3

б). NaBr + AgNO 3 = AgBr↓ + HNO 3 (осадок плохо растворим в аммиаке)

бледно-желтый осадок

в). NaI + AgNO 3 = AgI↓ + HNO 3 (осадок не растворим в аммиаке)

светло-желтый осадок

Элементы, входящие в VII группу периодической системы, делятся на две подгруппы: главную - подгруппу галогенов - и побочную - подгруппу марганца. В эту же группу помещают и водород, хотя его атом имеет на внешнем, валентном, уровне единственный электрон и его следовало бы поместить в I группу. Однако водород имеет очень мало общего как с элементами основой подгруппы - щелочными металлами, так и с элементами побочной подгруппы - медью, серебром и золотом. В то же время он, как и галогены, присоединяя в реакциях с активными металлами электрон, образует гидриды, имеющие некоторое сходство с галогенидами.

К подгруппе галогенов относятся фтор, хлор, бром, иод и астат. Первые четыре элемента встречаются в природе, последний получен искусственно и поэтому изучен значительно меньше остальных галогенов. Слово галоген означает солеобразующий. Это название элементы подгруппы получили благодаря легкости, с которой они реагируют со многими металлами, образуя соли.Все галогены имеют структуру внешней электронной оболочки s 2 p 5 . Поэтому они легко принимают электрон, образуя устойчивую благородногазовую электронную оболочку (s 2 р 6). Наименьший радиус атома в подгруппе - у фтора, у остальных он увеличивается в ряду F < Cl < Br < I < Аt и составляет соответственно 133; 181; 196; 220 и 270 пм. В таком же порядке уменьшается сродство атомов элементов к электрону. Галогены - очень активные элементы. Они могут отнимать, электроны не только у атомов, которые их легко отдают, но и у ионов и даже вытеснять другие галогены, менее активные, из их соединений. Например, фтор вытесняет хлор из хлоридов, хлор - бром из бромидов, а бром - иод из иодидов. Из всех галогенов только фтор, находящийся во II периоде, не имеет незаполненного d-уровня. По этой причине он не может иметь больше одного неспаренного электрона и проявляет валентность только -1. В атомах других галогенов d-уровень не заполнен, что дает им возможность иметь различное количество неспаренных электронов и проявлять валентность -1, +1, +3, +5 и +7, наблюдающуюся в кислородных соединениях хлора, брома и иода К подгруппе марганца принадлежат марганец, технеций и рений. В отличии от галогенов элементы подгруппы марганца имеют на внешнем электронном уровне всего два электрона и поэтому не проявляют способности присоединять электроны, образуя отрицательно заряженные ионы.Марганец распространен в природе и широко используется в промышленности.Технеций радиоактивен, в природе не встречаемся, а получен искусственно (впервые - Э. Сегре и К.Перрье, 1937}. Этот элемент образуется вследствие радиоактивного распада урана. Рений относится к числу рассеянных элементов. Он не образует самостоятельных минералов, а встречается в качестве спутника некоторых минералов, особенно молибденовых. Он был открыт В. и И. Ноддак в 1925 г. Сплавы, имеющие небольшие добавки рения, обладают повышенной устойчивостью против коррозии. Добавка рения к и ее сплавам увеличивает их механическую прочность. Это свойство рения позволяет применять его вместо благородного металла иридия. Платино-платинорениевые термопары работают лучше платино-платиноиридиевых, но их нельзя использовать при очень высоких температурах, так как образуется летучее соединение Re 2 O 7 .

Характерной особенностью неметаллов является большее (по сравнению с металлами) число электронов на внешнем энергетическом уровне их атомов. Это определяет их большую способность к присоединению дополнительных электронов и проявлению более высокой окислительной активности, чем у металлов. Особенно сильные окислительные свойства, т. е. способность присоединять электроны, проявляют неметаллы, находящиеся во 2-ом и 3-м периодах VI-VII групп. Если сравнить расположение электронов по орбиталям в атомах фтора, хлора и других галогенов, то можно судить и об их отличительных свойствах. У атома фтора свободных орбиталей нет. Поэтому атомы фтора могут проявить только валентность I и степень окисления ― 1. Самым сильным окислителем является фтор. В атомах других галогенов, например в атоме хлора, на том же энергетическом уровне имеются свободные d-орбитали. Благодаря этому распаривание электронов может произойти тремя разными путями. В первом случае хлор может проявить степень окисления +3 и образовать хлористую кислоту HClO2, которой соответствуют соли ― хлориты, например хлорит калия KClO2. Во втором случае хлор может образовать соединения, в которых степень окисления хлора +5. К таким соединениям относятсяхлорноватая кислота HClO3 и ее соли ― хлораты, например хлорат калия КClO3 (бертолетова соль). В третьем случае хлор проявляет степень окисления +7, например в хлорной кислоте HClO4 и в ее солях, ― перхлоратах (в перхлорате калия КClO4).

Частные аналитические реакции ионов Mn 2+

1.5.5. Окисление висмутатом натрия NaBiO 3 , протекает по уравнению:

2Mn(NO 3) 2 + 5NaBiO 3 + 16HNO 3 = 2HMnO 4 + 5Bi(NO 3) 3 + 5NaNO 3 + 7H 2 O.

Реакция идет на холоду.Выполнение реакции: к 1-2 каплям раствора соли марганца прибавляют 3-4 капли 6 М раствора HNO 3 и 5-6 капель H 2 O, после чего вносят лопаточкой немного порошка NaBiO 3 . перемешав содержимое пробирки, дают постоять 1-2 минуты, центрифугируют для отделения избытка висмутата натрия. В присутствии Mn 2+ раствор становится фиолетовым в результате образования марганцевой кислоты, которая является одним из наиболее сильных окислителей.

1.5.6. Окисление двуокисью свинца PbО 2 в азотнокислой среде при нагревании:

2Mn(NO 3) 2 + 5РbО 2 + 6HNO 3 → 2HMnO 4 + 5Pb(NO 3) 2 + 2Н 2 О.

Выполнение реакции: Берут немного порошка PbO 2 и помещают в пробирку, туда же добавляют 4-5 капель 6 M HNO 3 , нагревают при перемешивании. Появление фиолетовой окраски свидетельствует о наличии Mn 2+ .

1.5.7. Важное значение в анализе имеют реакции Mn 2+ c карбонатами щелочных металлов, гидрофосфатом натрия, реакции окисления персульфатом аммония, окисление бензидина соединениями Mn 4+ , восстановление AgCl до металлического серебра ионами Mn 2+ .

88.Элементы VIII B группы. Типичные свойства важнейших соединений. Биологическая роль. Аналитические реакции на ионы Fe 3+ , Fe 2+ .

Подгру́ппа желе́за - химические элементы 8-й группы периодической таблицы химических элементов (по устаревшей классификации - элементы побочной подгруппы VIII группы) . В группу входят железо Fe, рутений Ru и осмий Os. На основании электронной конфигурации атома к этой же группе относится и искусственно синтезированный элемент хассий Hs, который был открыт в 1984 в Центре исследования тяжёлых ионов (нем. Gesellschaft für Schwerionenforschung, GSI ), Дармштадт, Германия в результате бомбардировки свинцовой (208 Pb) мишени пучком ионов железа-58 из ускорителя UNILAC. В результате эксперимента были синтезированы 3 ядра 265 Hs, которые были надёжно идентифицированы по параметрам цепочки α-распадов . Одновременно и независимо эта же реакция исследовалась в ОИЯИ (Дубна,Россия), где по наблюдению 3 событий α-распада ядра 253 Es также был сделан вывод о синтезе в этой реакции ядра 265 Hs, подверженного α-распаду . Все элементы группы 8 содержат 8 электронов на своих валентных оболочках. Два элемента группы - рутений и осмий - относятся к семейству платиновых металлов. Как и в других группах, члены 8 группы элементов проявляют закономерностиэлектронной конфигурации, особенно внешних оболочек, хотя, как ни странно, рутений не следует этому тренду. Тем не менее, у элементов этой группы тоже проявляется сходство физических свойств и химического поведения: В чистом виде в природе железо редко встречается, чаще всего оно встречается в составе железо-никелевых метеоритов. Распространённость железа в земной коре - 4,65 % (4-е место после кислорода, кремния и алюминия ). Считается также, что железо составляет бо́льшую часть земного ядра.

К p-элементам VII ­группы относятся – фтор (F ), хлор (Сl ), бром (Вr ), йод (I ) и астат (Аt ). Данные элементы называют галогенами (рождающие соли). Все элементы данной подгруппы – неметаллы.

Общая электронная формула валентной зоны атомов имеет вид ns 2 np 5 , из которой следует, что на внешнем элек­тронном слое атомов рас­сматриваемых элементов находится семь электро­нов и они могут проявлять нечетные валентности 1, 3, 5, 7. У атома фтора отсутствует d-подуровень, поэтому возбужденные состояния отсутствуют и валентность фтора равна только 1.

Фтор – самый электроотрицательный элемент в периодической таблице и соответственно в соединениях с другими элементами проявляет только отрицательную степень окисления –1. Остальные галогены могут иметь степени окисления –1, 0, +1, +3, +5, +7. Каждый галоген в своем периоде является наиболее сильным окислителем. С повышением поряд­кового номера элементов в ряду F, С1, Br, Iи At увеличиваются радиусы атомов и уменьшается окислительная активность элементов.

Молекулы простых веществ двухатомны: F 2 , С1 2 , Br 2 , I 2 . При нормальных условиях фтор – газ бледно-жёлтого цвета, хлор – газ жёл­то-зелёного цвета, бром – красно-бурая жидкость, йод – кристаллическое вещест­во темно-фиолетового цвета. Все галогены обладают очень резким запахом. Вдыхание их приводит к тяжелым отравлениям. При нагревании йод сублимируется (возгоняется), превращаясь в пар фиолетового цвета; при охлаждении пары йода кристаллизуются, минуя жидкое состояние.

Галогены слабо растворимы в воде, но значительно лучше в органических растворителях. Фтор нельзя растворить в воде, так как он разлагает её:

2F 2 + 2Н 2 O = 4НF + О 2 .

При растворении хлора в воде происходит его частичное самоокисление-самовосстановление по реакции

С1 2 + Н 2 O ↔ НС1+ НС1О.

Полученный раствор называется хлорной водой. Он обладает сильными кислотными и окислительными свойствами и применяется для обеззараживания питьевой воды.

Галогены вступают во взаимодействие с многими простыми веществами, проявляя свойства окислителей. Фтор с многими неме­таллами реагирует со взрывом:

Н 2 + F 2 → 2HF,

Si + 2F 2 → SiF 4 ,

S + 3F 2 → SF 6 .

В атмосфе­ре фтора горят такие устойчивые вещества, как стекло в виде ваты и вода:

SiО 2 + 2F 2 → SiF 4 + О 2 ,

2Н 2 О + 2F 2 → 4HF + О 2 .

Фтор непосредственно не взаимодей­ствует только с кислородом, азотом, гелием, неоном и аргоном.

В атмосфере хлора сгорают многие металлы, образуя хлориды:

2Na + С1 2 → 2NaCl (яркая вспышка);

Сu + С1 2 → СuС1 2,

2Fe + 3Сl 2 → 2FeCl 3 .

Хлор непосредст­венно не взаимодействует с N 2 , О 2 и инертными газами.


Окислительная активность галогенов уменьшается от фтора к астату, а вос­становительная активность галогенид-ионов в этом направлении увеличивается. Из этого следует, что более активный галоген вытесняет менее активный из растворов его солей:

F 2 + 2NaCl → Cl 2 + 2NaF,

Cl 2 + 2NaBr → Br 2 + 2NaCl,

Вг 2 + 2NaI → I 2 + 2NaBr.

Водородные соединения галогенов хорошо растворимы в воде. Их водные растворы представляют собой кислоты:

HF– фтороводородная (плавиковая) кис­лота,

НС1 – хлороводородная кислота (водный раствор – соляная),

НВг – бромоводородная кислота,

HI – йодоводородная кислота.

НF должна быть одной из самых сильных кислот, но вследствие образования водородной связи (Н–F···Н–F) является слабой кислотой. Подтверждением наличия водородной связи между молекулами Н–F, как и в случае воды, является аномально высокая температура кипения Н–F.

Плавиковая кислота реагирует с SiО 2, поэтому HF нельзя получать и хранить в стеклянной посуде

SiО 2 + 4HF = SiF 4 + 2Н 2 О.

Остальные галогенводороды являются сильными кислотами.

Хлор, бром и йод образуют кислородсодержащие кислоты и соответствующие им соли. Ниже, на примере хлора, приведены формулы

кислот и соответствующих им солей:

НСlО, НСlО 2 , НСlО 3 , НСlО 4 ;

хлорноватистая хлористая хлорноватая хлорная

усиление кислотных свойств

КСlО, КСlО 2 , КСlО 3 , КСlО 4 .

гипохлорит калия хлорит калия хлорат калия перхлорат калия

Хлорная и хлорноватая кислоты являются сильными, а хлористая и хлорноватистая – слабыми. Из солей можно отметить:

СаОС1 2 – «хлорная известь» представляет собой сме­шанную соль соляной и хлорноватистой кислот.

КСlO 3 – хлорат калия, техническое название – бертолетова соль.

Фтор и его соединения применяются для получения термоустойчивых пластмасс (тефлон), хладагентов (фреоны) для холодильных машин.

Хлор используется в больших количествах для производства соляной кис­лоты синтетическим методом, хлорорганических инсектицидов, пластмасс, син­тетических волокон, хлорной извести, отбеливания тканей и бумаги, хлорирова­ния воды в целях обеззараживания, для хлорирования руд при получении металлов.

Соединения брома и йода используются для производства лекарственных препаратов, фотоматериалов.

Элементы 7Б-группы – марганец, искусственно полученный технеций, рений и искусственно полученный борий – завершают первые пятерки вставных декад d-элементов. Их валентная электронная конфигурация (n-1)d 5 s 2 . Имея на внешней электронной оболочке атома всего 2 электрона, марганец и его аналоги не способны присоединять электроны и, в отличие от галогенов (входящих с ними в одну группу), водородных соединений не образуют. Однако высшие водородные соединения этих элементов до некоторой степени сходны с соответствующими соединениями галогенов, так как в образовании связей с кислородом у них, как и у галогенов, могут участвовать семь электронов. Поэтому их высшая степень окисления равна +7.

В комплексных соединениях координационные числа марганца: 4 и 6, а технеция и рения: 7, 8, 9.

Из элементов подгруппы марганца наибольшее практическое значение имеет сам марганец. Рений – редкий элемент, однако, благодаря ряду ценных свойств, находит применение в технике. Технеций в земной коре не встречается. Он был получен искусственно, бомбардировкой ядер атомов молибдена ядрами тяжелого изотопа водорода – дейтронами.

Основная масса металлического марганца получается в настоящее время путем алюмотермического восстановления пиролюзита, гаусманита или предварительно обожженных карбонатных и сульфидных руд:

3Mn 3 O 4 + 8Al = 9Mn + 4Al 2 O 3

Рений получают из отходов медного и молибденово-вольфрамового производства. Через ряд последовательных реакций рений переводят в перренат калия, который восстанавливают водородом при нагревании:

2KReO 4 + 7H 2 = 2KOH + 2Re + 6H 2 O

По химической устойчивости элементы подгруппы марганца заметно различаются. Марганец в электрохимической ряду напряжений располагается между магнием и цинком и является, таким образом, довольно активным металлом, то технеций и рений относятся к благородным металлам.

Для марганца могут быть получены следующие оксиды: MnO, Mn 2 O 3 , MnO 2 , Mn 2 O 7 . С увеличением степени окисления марганца свойства оксидов меняются от основных через амфотерные к кислотным:

MnO Mn 2 O 3 MnO 2 Mn 2 O 7 .

Основные св-ва уменьшаются, кислотные – увеличиваются.

Оксиды технеция и рения, отвечающие низшим степеням окисления, получаются лишь косвенным путем. При нагревании на воздухе оба элемента образуют высшие оксиды Э 2 О 7 .

Устойчивые степени окисления марганца +2, +4, +7 в соединениях кислотного и солевого характера.

Оксид марганца (II) MnO встречается в природе в виде мелких зеленых кристаллов, плохо растворимых в воде. При нагревании на воздухе превращается в разные оксиды:

MnO → MnO 2 → Mn 2 O 3 → MnO 3

MnO растворяется в кислотах:



MnO + 2H+ + 5H 2 O → 2+

Обработка аквакомплекса 2+ при рН=8,5 в атмосфере водорода

приводит к образованию нерастворимого гидроксида марганца (II):

2+ + 2OH- → Mn(OH) 2 ↓ + 6H 2 O

Гидроксид марганца (II) обладает слабоосновными свойствами, окисляется кислородом воздуха и другими окислителями до марганцеватистой кислоты или ее солей манганитов:

Mn(OH) 2 + H 2 O 2 → H 2 MnO 3 ↓ + H 2 O

Марганцеватистая кислота выпадает в осадок.

В щелочной среде Mn 2+ окисляется до MnO 4 2- , а в кислой – до MnO 4 -

MnSO 4 + 2KNO 3 + 4KOH→K 2 MnO 4 + 2KNO 2 + K 2 SO 4 + 2H 2 O

В биологических процессах Mn 2+ не меняет степени окисления. Устойчивые биокомплексы марганца в организме стабилизируют эту степень окисления. Стабилизирующее действие проявляется в большом времени удержания гидратной оболочки.

MnO 2 является устойчивым природным соединением марганца, которое встречается в четырех модификациях. Все модификации имеют амфотерный характер и обладают окислительно-восстановительной двойственностью:

MnO 2 + 2KI + 3CO 2 + H 2 O → I 2 + MnCO 3 + 2KHCO 3

6MnO 2 + 2NH 3 → 3Mn 2 O 3 + N 2 + 3H 2 O

4MnO 2 + 3O 2 + 4KOH → 4KMnO 4 + 2H 2 O

2MnO 2 + 3Cl 2 + 8KOH → 2KMnO 4 + 6KCl + 4H 2 O

Производные Mn (VII) - это оксид марганца Mn 2 O 7 и его гидратная форма – марганцевая кислота HMnO 4 , известная только в растворе.

Соли марганцевой кислоты – перманганаты. Ионы обусловливают фиолетовую окраску растворов. Перманганаты – сильные окислители. Это свойство используется в медицинской практике для дезинфекции. KMnO 4 применяют в титриметрическом анализе для определения различных восстановителей (перманганатометрия), используют в экологии для оценки загрязненности сточных вод.



Для организма перманганаты являются ядами, их обезвреживание проводят введением 3%-го пероксида водорода, подкисленного уксусной кислотой:

2KMnO 4 + 5H 2 O 2 + 6CH 3 COOH=2Mn(CH 3 COO) 2 + 2CH 3 COOK + 8H 2 O + 5O 2

Марганец является биогенным элементом и одним из десяти металлов жизни, необходимых для нормального протекания процессов в живых организмах.

Новое на сайте

>

Самое популярное