Домой Нарыв Молекулярная масса в химии. Относительная молярная и молекулярная массы вещества

Молекулярная масса в химии. Относительная молярная и молекулярная массы вещества

МОЛЕКУЛЯРНАЯ МАССА,

сумма масс атомов, входящих в состав данной молекулы; выражается в атомных единицах массы (а. е. м.). Поскольку 1 а. е. м. (иногда называемая дальтон, D) равна 1 / 12 массы атома нуклида 12 С и в единицах массы составляет 1,66057 . 10 -27 кг, то умножение М. м. на 1,66057 . 10 -27 дает абс. массу молекулы в килограммах. Чаще пользуются безразмерной величиной М отн -относительной М. м.: М отн где М х -> масса молекулы x, выраженная в тех же единицах массы (кг, г или др.), что и D. М. м. характеризует среднюю массу молекулы с учетом изотопного состава всех элементов, образующих данное хим. соединение. Иногда М. м. определяют для смеси разл. в-в известного состава, напр. для воздуха "эффективную" М. м. можно принять равной 29.

Абс. массами молекул удобно оперировать в области физики субатомных процессов и радиохимии, где путем измерения энергии частиц, согласно теории относительности, определяют их абс. массы. В химии и хим. технологии необходимо применять макроскопич. единицы измерения кол-ва в-ва. Число любых частиц (молекул, атомов, электронов или мысленно выделяемых в в-ве групп частиц, напр. пар ионов Na + и Сl - в кристаллич. решетке NaCl), равное Авогадро постоянной N А = 6,022 . 10 23 , составляет макроскопич. единицу кол-ва в-ва-моль. Тогда можно записать: М отн = x . N A /(D . N A),T.е. относительная М. м. равна отношению массы моля в-ва к N A D. Если в-во состоит из молекул с ковалентными связями между составляющими их атомами, то величина x . N A представляет собой м о л я рн у ю м а с с у этого в-ва, единицы измерения к-рой кг-моль (киломоль, кМ). Для в-в, не содержащих молекул, а состоящих из атомов, ионов или радикалов, определяется ф о р-м у л ь н а я м о л я р н а я м а с с а, т. е. масса N A частиц, соответствующих принятой формуле в-ва (однако в СССР часто и в этом случае говорят о М. м., что неверно).

Ранее в химии использовали понятия грамм-молекула, грамм-атом, грамм-ион, теперь-моль молекул, моль атомов, моль ионов, подразумевая под этим N A молекул, атомов, ионов и соотв. их молярные массы, выраженные в граммах или килограммах. Традиционно употребляют в качестве синонима термин "молекулярный (молярный) вес", т. к. определение массы производится с помощью весов. Но, в отличие от веса, зависящего от географич. координат, масса является постоянным параметром кол-ва в-ва (при обычных скоростях движения частиц в условиях хим. р-ций), поэтому правильнее говорить "молекулярная масса".

Большое число устаревших терминов и понятий, касающихся М. м., объясняется тем, что до эры космич. полетов в химии не придавали значения различию между массой и весом, к-рое обусловлено разностью значений ускорения своб. падения на полюсах (9,83 м. с -2) и на экваторе (9,78 м. с -2); при расчетах силы тяжести (веса) обычно пользуются средним значением, равным 9,81 м. с -2 . Кроме того, развитие понятия молекулы (как и атома) было связано с исследованием макроскопич. кол-в в-ва в процессах их хим. (реакции) или физ. () превращений, когда не была разработана теория строения в-ва (19 в.) и предполагалось, что все хим. соед. построены только из атомов и молекул.

Методы определения. Исторически первый метод (обоснованный исследованиями С. Канниццаро и А. Авогадро) предложен Ж. Дюма в 1827 и заключался в измерении плотности газообразных в-в относительно водородного газа, молярная масса к-рого принималась первоначально равной 2, а после перехода к кислородной единице измерений молекулярных и атомных масс-2,016 г. След. этап развития эксперим. возможностей определения М. м. заключался в исследовании жидкостей и р-ров нелетучих и недиссоциирующих в-в путем измерения коллигативных св-в (т. е. зависящих только от числа растворенных частиц) - осмотич. давления (см. Осмометрия), понижения давления пара, понижения точки замерзания (криоскопия )и повышения точки кипения (эбулиоскопия )р-ров по сравнению с чистым р-рителем. При этом было открыто "аномальное" поведение электролитов.

Понижение давления пара над р-ром зависит от молярной доли растворенного в-ва (закон Рауля): [( р - р 0 )/р] = N, где р 0 -> давление пара чистого р-рителя, р- давление пара над р-ром, N- молярная доля исследуемого растворенного в-ва, N = ( т х / М х )/[( т х / М х ) + (m 0 /M 0)], x и М х -соотв. навеска (г) и М. м. исследуемого в-ва, m 0 и М 0 -то же для р-рителя. В ходе определений проводят экстраполяцию к бесконечно разб. р-ру, т. е. устанавливают для р-ров исследуемого в-ва и для р-ров известного (стандартного) хим. соединения. В случае криоскопии и эбулиоскопии используют зависимости соотв. Dt 3 = Кс и Dt к = Еc, где Dt 3 -понижение т-ры замерзания р-ра, Dt к - повышение т-ры кипения р-ра, К и Е- соотв. криоскопич. и эбулиоскопич. постоянные р-рителя, определяемые по стандартному растворенному в-ву с точно известной М. м., с-моляльная исследуемого в-ва в р-ре ( с = М х т х. 1000/m 0). М. м. рассчитывают по ф-лам: М х = т х К. 1000/m 0 Dt 3 или М х = т х Е. 1000/m 0 Dt к. Методы характеризуются достаточно высокой точностью, т. к. существуют спец. (т. наз. термометры Бекмана), позволяющие измерять весьма малые изменения т-ры.

Для определения М. м. используют также изотермич. перегонку р-рителя. При этом пробу р-ра исследуемого в-ва вносят в камеру с насыщ. паром р-рителя (при данной т-ре); пары р-рителя конденсируются, т-ра р-ра повышается и после установления равновесия вновь понижается; по изменению т-ры судят о кол-ве выделившейся теплоты испарения, к-рая связана с М. м. растворенного в-ва. В т. наз. изопиестич. методах проводят изотермич. перегонку р-рителя в замкнутом объеме, напр. в Н-образном сосуде. В одном колене сосуда находится т. наз. р-р сравнения, содержащий известную массу в-ва известной М. м. (молярная концентрация C 1), в другом-р-р, содержащий известную массу исследуемого в-ва (молярная концентрация С 2 неизвестна). Если, напр., С 1 > С 2 ,> р-ритель перегоняется из второго колена в первое, пока молярные концентрации в обоих коленах не будут равны. Сопоставляя объемы полученных изопиестич. р-ров, рассчитывают М. м. неизвестного в-ва. Для определения М. м. можно измерять массу изопиестич. р-ров с помощью весов Мак-Бена, к-рые представляют собой две чашечки, подвешенные на пружинках в закрытом стеклянном сосуде; в одну чашечку помещают исследуемый р-р, в другую-р-р сравнения; по изменению положения чашечек определяют массы изопиестич. р-ров и, следовательно, М. м. исследуемого в-ва.

Осн. методом определения атомных и мол. масс летучих в-в является масс-спектрометрия. Для исследования смеси соед. эффективно использование хромато-масс-спектромет-рии. При малой интенсивности пика мол. иона применяют эффузиометрич. приставки к масс-спектрометрам. Эффузио-метрич. способ основан на том, что скорость вытекания газа в из камеры через отверстие, диаметр к-рого значительно меньше среднего пути своб. пробега молекулы, обратно пропорциональна квадратному корню из М. м. в-ва; скорость вытекания контролируют по изменению давления в камере. М. м. летучих соед. определяют также методами газовой хроматографии с газовыми весами Мартина. Последние измеряют скорость перемещения газа в канале, соединяющем трубки, по к-рым текут газ-носитель и газ из хроматографич. колонки, что позволяет определять разницу плотностей этих газов, зависящую от М. м. исследуемого в-ва.

М. м. измеряют для идентификации хим. соед., для установления содержания отдельных нуклидов в соед., напр. в воде, используемой в атомных энергетич. установках, а также при исследовании и синтезе высокомол. соед., св-ва к-рых существенно зависят от их М. м. (см. Молекулярная масса полимера). Средние значения М. м. полимеров устанавливают с помощью перечисленных выше методов, основанных на коллигативных св-вах разбавленных р-ров, по числу двойных связей ("мягким" озонолизом) или функц. групп (методами функцион. анализа), а также по таким св-вам их р-ров, как , светорассеяние. Средние значения мол. масс полимеров высокой степени полимеризации определяют по их реологич. характеристикам.

Лит.: Рафиков С. Р., Павлова С. А., Твердохлебова И. И., Методы определения молекулярных весов и полидисперсности высокомолекулярныхсоединений, М., 1963; Полинг Л., Полинг П., Химия, пер. с англ., М., 1978; Вилков Л. В., Пентин Ю. А., Физические методы исследования в химии, М., 1987. Ю. А. Клячко.


Химическая энциклопедия. - М.: Советская энциклопедия . Под ред. И. Л. Кнунянца . 1988 .

Смотреть что такое "МОЛЕКУЛЯРНАЯ МАССА" в других словарях:

    Значение массы молекулы, выраженное в атомных единицах массы. Практически М. м. равна сумме масс входящих в неё атомов (см. АТОМНАЯ МАССА). Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983 … Физическая энциклопедия

    - (молекулярный вес) масса молекулы, выраженная в атомных единицах массы. Практически равна сумме масс всех атомов, из которых состоит молекула. Величины молекулярной массы используются в химических, физических и химико технических расчетах … Большой Энциклопедический словарь

    - (масса моля), термин ранее использовался для обозначения ОТНОСИТЕЛЬНОЙ МОЛЕКУЛЯРНОЙ МАССЫ … Научно-технический энциклопедический словарь

    Молекулярная масса М м - Молекулярная масса, М. м. * малекулярная маса, М. м. * molecular mass or M. m. масса молекулы, не имеющая собственных единиц измерения, поэтому обычно в этом смысле используют термин «молекулярный вес» (см.) … Генетика. Энциклопедический словарь

    молекулярная масса - — Тематики биотехнологии EN molecular mass … Справочник технического переводчика

    Молекулярная масса - – относительная величина, отношение массы молекулы данного вещества к 1/12 части массы атома Изотопа углерода С12. [Ушеров Маршак А. В. Бетоноведение: лексикон. М.: РИФ Стройматериалы. 2009. – 112 с.] Рубрика термина: Общие термины… … Энциклопедия терминов, определений и пояснений строительных материалов

    молекулярная масса - santykinė molekulinė masė statusas T sritis Standartizacija ir metrologija apibrėžtis Molekulės vidutinės masės arba tiksliai apibrėžto medžiagos darinio masės ir nuklido ¹²C atomo masės 1/12 dalies dalmuo. atitikmenys: angl. molecular mass;… …

    молекулярная масса - santykinė molekulinė masė statusas T sritis Standartizacija ir metrologija apibrėžtis Molekulę sudarančių atomų santykinių atominių masių suma, skaitine verte lygi medžiagos molio masei. atitikmenys: angl. molecular mass; molecular weight;… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    молекулярная масса - santykinė molekulinė masė statusas T sritis chemija apibrėžtis Molekulę sudarančių atomų santykinių atominių masių suma, skaitine verte lygi vieno medžiagos molio masei. atitikmenys: angl. molecular mass; molecular weight; relative molecular mass … Chemijos terminų aiškinamasis žodynas

    - (молекулярный вес), масса молекулы, выраженная в атомных единицах массы. Практически равна сумме масс всех атомов, из которых состоит молекула. Величины молекулярной массы используются в химических, физических и химико технологических расчётах. * … Энциклопедический словарь

Книги

  • Характеристики углеводородов. Анализ численных данных и их рекомендованные значения. Справочное издание , Ю. А. Лебедев , А. Н. Кизин , Т. С. Папина , И. Ш. Сайфуллин , Ю. Е. Мошкин , В настоящей книге представлены важнейшие численные характеристики ряда углеводородов, среди которых рассматриваются следующие физико-химические константы: молекулярная масса, температура… Категория: Химия Издатель: ЛЕНАНД , Производитель:

Массы молекул, как и массы атомов, очень малы. Поэтому для их расчета используют сравнение с атомной единицей массы. Относительная соединения - это которая равна отношению соединения к 1/12 доли атома углерода. Данный показатель указывает на то, во сколько раз вес всей молекулы превышает 1/12 часть веса элементарной частицы карбона и, как любая не имеет размерности и обозначается символом Mr.

Mr(соединения)= m(молекулы соединения) / 1/12 m(С). Однако на практике используется другая схема вычисления данной величины. В соответствии с ней, относительная молекулярная масса равна суммарному значению относительных атомных масс (Ar) всех химических элементов, которые образуют данное соединение с учетом числа элементарных частиц каждого элемента, т.е. схематически можно записать так:

Mr(B1xC1y) = x*Ar(B1) + y*Ar(C1).

Для того, чтобы правильно определять данную величину необходимо:

  1. знать химическую формулу вещества;
  2. правильно определять Ar в таблице Д. И. Менделеева (так, если число стоящее после запятой, равно или привышает 5, то при округлении до целого добавляется единица: например, Ar (Li) = 6, 941, для расчета используем целое число, которое равно 7; а если число меньше 5, то оставляем таким, какое есть: Ar (K) = 39,098, т.е. берем 39).
  3. при вычислении Mr не забываем учитывать число атомов, т.е. индексы, стоящие у элементов в формуле соединения.

Относительная молекулярная масса, формула которой схематически указана выше, применяется к сложным соединениям. Потому что для расчета данной величины у простого вещества достаточно определить только относительную атомную массу по периодической таблице и при необходимости умножить на количество элементарных частиц. Например: Mr(Р) = Ar (Р) = 31 и Mr(N 2) = 2* Ar (N) = 2*14=18.

Рассмотрим другой пример и узнаем, чему равна относительная молекулярная масса воды - сложного вещества. Эмпирическая формула данного вещества Н 2 О, т.е. оно состоит из 2 и 1 атома кислорода. Поэтому запись решения выглядит так:

Mr (Н 2 О) = 2*Ar(H)+ Ar(O) = 2*1+16 = 18

Можно записывать сокращенно, опуская буквенное выражение. Данная цифра показывает, что Mr в 18 раз больше 1/12 массы элементарной частицы карбона. Аналогично определяется относительная молекулярная масса любого химического соединения, при условии, что известна его эмпирическая формула. Но также, используя данную величину, можно восстановить качественный и количественный состав неизвестных веществ, установить содержание отдельных нуклидов. На практике для определения Mr вещества применяют физико-химические методы, такие как: перегонка, масс-спектрометрия, и т.д. Для определения данного показателя у полимеров используют методы, основанные на (определяют количество двойных связей, функциональную группу, вязкость, способность рассеивать свет).

Таким образом, относительная молекулярная масса свойственна каждому веществу и будет для него индивидуальна. Данная величина определяется как для простых, так и для сложных и органических. Ее показатели особенно важны при исследовании и синтезировании полимеров, свойства которых будут зависеть от показателя молекулярной массы.

Содержание статьи

МОЛЕКУЛЯРНАЯ МАССА, масса молекулы, выраженная в относительных единицах (называемых а.е.м. или дальтон). Эта величина введена для удобства, поскольку действительная масса молекул в общепринятых единицах массы чрезвычайно мала. За единицу мол. массы принята та же величина, что и при определении атомной массы: это 1/12 массы атома изотопа углерода-12, условно принятой равной 12 (см. АТОМНАЯ МАССА) . Мол. масса численно равна сумме относительных атомных масс всех атомов данной молекулы и легко подсчитывается по формуле вещества.

Газы и пары.

Согласно закону Авогадро, в равных объемах газов при одинаковых давлении и температуре содержится одинаковое число молекул. Следовательно, один моль любого газа при данных температуре и давлении должен занимать один и тот же объем (один из законов идеальных газов; см . ХИМИЯ). С учетом поправок на неидеальность объем одного моля (6,02Ч10 23 молекул) любого газа при 0° С и 1 атм равен 22,414 л. На основании закона Авогадро находят мол. массу газообразных веществ. В общих чертах процедура состоит в следующем. Определяют массу известного объема газа при данных давлении и температуре. После введения поправок на неидеальность приводят объем к условиям 0° С и 1 атм, используя уравнение состояния идеального газа PV = RT , где R – газовая постоянная. Зная массу и объем идеального газа при °С и 1 атм, нетрудно рассчитать массу 22,414 л газа, т.е. его мол. массу. Этим методом были получены точные значения мол. масс, которые использовались даже для определения атомных масс. Для приближенной оценки мол. массы газ считают идеальным и никаких поправок не делают.

Данный метод часто применяют при определении мол. масс летучих жидкостей и твердых веществ. Для этого используют уравнение состояния газа в виде PV = wRT /M (уравнение Клапейрона – Менделеева), где w – масса паров вещества с мол. массой М , занимающих объем V при температуре Т и давлении Р . Если Р выражено в атм, а V – в см 3 или мл, то R = 82,06. Отсюда получаем M = wRT /PV и, зная все величины в правой части, находим мол. массу паров вещества. Для определения таким методом мол. масс летучих жидкостей и твердых веществ было создано несколько устройств. Наибольшее распространение получил прибор немецкого химика В.Мейера (1878) – длинная вертикальная трубка, закрытая сверху и расширяющаяся книзу в виде конической колбы, окруженная нагревательной рубашкой. Известное количество изучаемой жидкости (или твердого вещества) помещали на дно колбы и испаряли. При испарении эквивалентный объем воздуха вытеснялся через боковой отвод вверху трубки в измерительное устройство. Объем вытесненного воздуха, измеренный при температуре и давлении окружающей среды, равен объему паров изучаемого вещества в этих же условиях. Зная w , Т и Р , можно вычислить М – мол. массу паров вещества. Усовершенствовав аппарат В.Мейера, можно было проводить измерения при температурах до 2000° С.

Растворы.

Мол. массу трудноиспаряющихся веществ определяют, исследуя свойства их растворов. Если нелетучее вещество растворить в летучем жидком растворителе, то давление паров последнего уменьшится. Соответственно температура кипения раствора возрастет, а температура замерзания понизится по сравнению с чистым растворителем. Все эти величины пропорциональны числу молей растворенного вещества в данном объеме растворителя (при условии, что раствор является разбавленным); это позволяет определить мол. массу вещества в растворе. Пусть Dр – изменение давления паров разбавленного раствора при добавлении w 2 граммов растворенного вещества с мол. массой М 2 в w 1 граммов растворителя с мол. массой М 1 , р – давление паров чистого растворителя при той же температуре. Тогда

Dр = pw 2 M 1 /w 1 M 2 , откуда М 2 = рw 2 М 1 /w 1 Dр

Поскольку давление паров трудно измерить с достаточной точностью, этот метод применяют довольно редко и только в усовершенствованном варианте.

Наиболее распространен метод определения мол. массы растворенных веществ, основанный на измерении температур замерзания или кипения растворов. Если DТ – понижение температуры замерзания или повышение температуры кипения раствора по сравнению с чистым растворителем, то DТ = K Ч1000w 2 /w 1 М 2 , где K – молярная криоскопическая или эбулиоскопическая постоянная для данного растворителя. Отсюда М 2 = K Ч1000w 2 /w 1 DТ . Постоянную K можно определить экспериментально, используя растворенные вещества с известной мол. массой, или найти с помощью термодинамических расчетов. Отметим, что приведенное соотношение применимо для определения мол. масс только очень разбавленных растворов.

Метод Бекмана.

В этом методе измеряют температуру замерзания известного количества растворителя (w 1), затем добавляют в него заданное количество растворенного вещества (w 2) и измеряют понижение температуры замерзания раствора с помощью термометра Бекмана. Этот термометр регистрирует не саму температуру, а разность температур, но с точностью 0,001° С. При измерениях могут возникать ошибки, связанные с переохлаждением раствора. Для их устранения применяют более совершенные модификации прибора. Для приближенной оценки мол. массы существует более простой метод Раста, где в качестве растворителя используют камфору, температура замерзания которой при растворении в ней различных веществ понижается очень сильно и может быть измерена обычным термометром.

Методы Ландсбергера и Котрелла.

Бекман сконструировал также прибор для измерения повышения температуры кипения растворов, но здесь возникают те же проблемы, что и при измерении точки замерзания, а именно связанные с перегревом раствора. Для приближенных оценок используется метод Ландсбергера, в котором жидкость нагревают до температуры кипения, пропуская через нее пар. Для точных определений предпочтительна методика Котрелла. В ней термометр не погружают в жидкость, а помещают над ее поверхностью, так что пузырьки пара, поднимающиеся вверх, увлекают за собой жидкость, и она омывает термометр. Это позволяет избежать ошибок, связанных с перегревом.

Другие методы.

Еще один метод определения мол. массы растворенных веществ основан на измерении осмотического давления. Для разбавленного раствора, содержащего известное количество w граммов растворенного вещества с мол. массой М в объеме растворителя V , осмотическое давление Р при температуре Т равно P = wRT /MV . Если Р выражено в атм, а V – в см 3 или мл, то константа R = 82,06 (см . выше ). Измерить осмотическое давление растворов для обычных веществ довольно трудно. Однако этот метод оказался весьма полезным для определения мол. масс высокомолекулярных соединений, поскольку создаваемое ими осмотическое давление достаточно велико и можно получить точные данные на относительно простой аппаратуре. Высокомолекулярные соединения имеют большое практическое значение, поэтому методы определения их мол. масс совершенствуются. Можно упомянуть методы, основанные на измерении вязкости и рассеяния света, а также ультрацентрифугирование. Последний применяется наиболее широко для определения мол. масс биополимеров (нуклеиновых кислот и белков).

Масс-спектрометрический метод.

Этим принципиально иным, чем все рассмотренные выше, методом определяют массу разных видов молекул или разных изотопов, находящихся в исследуемом объеме. Особую ценность он представляет для изотопного анализа. Допустим, требуется определить, содержится ли в образце метана СН 4 изотоп 13 С помимо обычного изотопа 12 С. У обычного метана мол. масса равна 16, а у его изотопического варианта 17. В масс-спектре ему соответствует отдельная линия, по положению которой можно точно определить мол. массу.

Многие опыты показывают, что размер молекулы очень мал. Линейный размер молекулы или атома можно найти различными способами. Например, с помощью электронного микроскопа, получены фотографии некоторых крупных молекул, а с помощью ионного проектора (ионного микроскопа) можно не только изучить строение кристаллов, но определить расстояние между отдельными атомами в молекуле.

Используя достижения современной экспериментальной техники, удалось определить линейные размеры простых атомов и молекул, которые составляют около 10-8 см. Линейные размеры сложных атомов и молекул намного больше. Например, размер молекулы белка составляет 43*10 -8 см.

Для характеристики атомов используют представление об атомных радиусах, которые дают возможность приближённо оценить межатомные расстояния в молекулах, жидкостях или твёрдых телах, так как атомы по своим размерам не имеют чётких границ. То есть атомный радиус – это сфера, в которой заключена основная часть электронной плотности атома (не менее 90…95%).

Размер молекулы настолько мал, что представить его можно только с помощью сравнений. Например, молекула воды во столько раз меньше крупного яблока, во сколько раз яблоко меньше земного шара.

Моль вещества

Массы отдельных молекул и атомов очень малы, поэтому в расчётах удобнее использовать не абсолютные значения масс, а относительные.

Относительная молекулярная масса (или относительная атомная масса ) вещества М r – это отношение массы молекулы (или атома) данного вещества к 1/12 массы атома углерода.

М r = (m 0) : (m 0C / 12)

где m 0 – масса молекулы (или атома) данного вещества, m 0C – масса атома углерода.

Относительная молекулярная (или атомная) масса вещества показывает, во сколько раз масса молекулы вещества больше 1/12 массы изотопа углерода С 12 . Относительная молекулярная (атомная) масса выражается в атомных единицах массы.

Атомная единица массы – это 1/12 массы изотопа углерода С 12 . Точные измерения показали, что атомная единица массы составляет 1,660*10 -27 кг, то есть

1 а.е.м. = 1,660 * 10 -27 кг

Относительная молекулярная масса вещества может быть вычислена путём сложения относительных атомных масс элементов, входящих в состав молекулы вещества. Относительная атомная масса химических элементов указана в периодической системе химических элементов Д.И. Менделеева.

В периодической системе Д.И. Менделеева для каждого элемента указана атомная масса , которая измеряется в атомных единицах массы (а.е.м.). Например, атомная масса магния равна 24,305 а.е.м., то есть магний в два раза тяжелее углерода, так как атомная масса углерода равна 12 а.е.м. (это следует из того, что 1 а.е.м. = 1/12 массы изотопа углерода, который составляет большую часть атома углерода).

Зачем измерять массу молекул и атомов в а.е.м., если есть граммы и килограммы? Конечно, можно использовать и эти единицы измерения, но это будет очень неудобно для записи (слишком много чисел придётся использовать для того, чтобы записать массу). Чтобы найти массу элемента в килограммах, нужно атомную массу элемента умножить на 1 а.е.м. Атомная масса находится по таблице Менделеева (записана справа от буквенного обозначения элемента). Например, вес атома магния в килограммах будет:

m 0Mg = 24,305 * 1 a.e.м. = 24,305 * 1,660 * 10 -27 = 40,3463 * 10 -27 кг

Массу молекулы можно вычислить путём сложения масс элементов, которые входят в состав молекулы. Например, масса молекулы воды (Н 2 О) будет равна:

m 0Н2О = 2 * m 0H + m 0O = 2 * 1,00794 + 15,9994 = 18,0153 a.e.м. = 29,905 * 10 -27 кг

Моль равен количеству вещества системы, в которой содержится столько же молекул, сколько содержится атомов в 0,012 кг углерода С 12 . То есть, если у нас есть система с каким-либо веществом, и в этой системе столько же молекул этого вещества, сколько атомов в 0,012 кг углерода, то мы можем сказать, что в этой системе у нас 1 моль вещества .

Постоянная Авогадро

Количество вещества ν равно отношению числа молекул в данном теле к числу атомов в 0,012 кг углерода, то есть количеству молекул в 1 моле вещества.

ν = N / N A

где N – количество молекул в данном теле, N A – количество молекул в 1 моле вещества, из которого состоит тело.

N A – это постоянная Авогадро. Количество вещества измеряется в молях.

Постоянная Авогадро – это количество молекул или атомов в 1 моле вещества. Эта постоянная получила своё название в честь итальянского химика и физика Амедео Авогадро (1776 – 1856).

В 1 моле любого вещества содержится одинаковое количество частиц.

N A = 6,02 * 10 23 моль -1

Молярная масса – это масса вещества, взятого в количестве одного моля:

μ = m 0 * N A

где m 0 – масса молекулы.

Молярная масса выражается в килограммах на моль (кг/моль = кг*моль -1).

Молярная масса связана с относительной молекулярной массой соотношением:

μ = 10 -3 * M r [кг*моль -1 ]

Масса любого количества вещества m равна произведению массы одной молекулы m 0 на количество молекул:

m = m 0 N = m 0 N A ν = μν

Количество вещества равно отношению массы вещества к его молярной массе:

ν = m / μ

Массу одной молекулы вещества можно найти, если известны молярная масса и постоянная Авогадро:

m 0 = m / N = m / νN A = μ / N A

Более точное определение массы атомов и молекул достигается при использовании масс-спректрометра – прибора, в котором происходит разделение пучком заряженных частиц в пространстве в зависимости от их массы заряда при помощи электрических и магнитных полей.

Для примера найдём молярную массу атома магния. Как мы выяснили выше, масса атома магния равна m0Mg = 40,3463 * 10 -27 кг. Тогда молярная масса будет:

μ = m 0Mg * N A = 40,3463 * 10 -27 * 6,02 * 10 23 = 2,4288 * 10 -2 кг/моль

То есть в одном моле «помещается» 2,4288 * 10 -2 кг магния. Ну или примерно 24,28 грамм.

Как видим, молярная масса (в граммах) практически равна атомной массе, указанной для элемента в таблице Менделеева. Поэтому когда указывают атомную массу, то обычно делают так:

Атомная масса магния равна 24,305 а.е.м. (г/моль).

На вопрос В чем измеряется молекулярная масса вещества? заданный автором Евгения лучший ответ это В молях по моему

Ответ от Ђанюся [эксперт]
эм...дайко вспомнить и по физики у меня был трояк...ну может в "моль"


Ответ от Xarkonnen [гуру]
в атомных единицах массы.
1 а.е.м. равна массе атома водорода.


Ответ от Оксана Сабинина (Галиева) [новичек]
в г/моль, нет наоборот моль/г М=моль/грам


Ответ от Илья [гуру]
В системе СИ - в килограммах.
Или можно в молях - количество вещества.


Ответ от Ася [активный]
ни в чем, это безразмерная величина. Это относительная величина, относительно одной двеннадцатой массе атома изотопа углерода 12. Вот.


Ответ от Константин [гуру]
Молекулярная - в "атомных единицах массы" (а.е.м.), которая равна 1/12 массы атома углерода-12.


Ответ от Пользователь удален [гуру]
В молекулярных килограммах


Ответ от Ўлианна [эксперт]
В долларах-)


Ответ от Любовь [эксперт]
в молях... физика, чувствуеться, любимый предмет))


Ответ от Пользователь удален [новичек]
В молях конечно. А один моль кажется 6х10 в 23 степени(если в числах). По химии 4 была


Ответ от Firestarter [гуру]
Молекулярная масса - в а.е.м., молярная - в г/моль. Уверен на 100%, т.к. химик по образованию.


Ответ от Ѐома [активный]
в любых единицах измерения массы. только надо переводить. а так вообще в а.е.м


Ответ от Dilshod Asrokulov [новичек]
ни в чём


Ответ от Вадим Матяш [новичек]
Количество вещества, то есть - НЮ - в молях
А молекулярная масса в граммах делёное на моль - г/моль


Ответ от Ольга Булгакова [новичек]
Помогите решить задачу! Для полной нейтрализации двух кислот, содержащих по 0,1 моль вещества в растворе израсходовано: а) для первой 150г 8% раствора гидроксида натрия; б) для второй 93,3г 12%раствора гидроксида калия. Определите основность кислот


Ответ от Марина [гуру]
ни в чём


Ответ от VaDiM [гуру]
Моль, а что?


Ответ от Ѓлесиков И.В. [гуру]
В Молях... .
Моль, молярная масса
В химических процессах участвуют мельчайшие частицы – молекулы, атомы, ионы, электроны. Число таких частиц даже в малой порции вещества очень велико. Поэтому, чтобы избежать математических операций с большими числами, для характеристики количества вещества, участвующего в химической реакции, используется специальная единица – моль.
Моль - это такое количество вещества, в котором содержится определенное число частиц (молекул, атомов, ионов) , равное постоянной Авогадро (NA=6,02 1023 моль-1).
Постоянная Авогадро NA определяется как число атомов, содержащееся в 12 г изотопа 12С:
Постоянная Авогадро
Таким образом, 1 моль вещества содержит 6,02 1023 частиц этого вещества.
Исходя из этого, любое количество вещества можно выразить определенным числом молей n (ню). Например, в образце вещества содержится 12,04 1023 молекул. Следовательно, количество вещества в этом образце составляет:
Количество вещества в образце
В общем виде: Формула количества вещества
где N – число частиц данного вещества;
NA – число частиц, которое содержит 1 моль вещества (постоянная Авогадро) .
Молярная масса вещества (M) – масса, которую имеет 1 моль данного вещества.
Эта величина, равная отношению массы m вещества к количеству вещества n, имеет размерность кг/моль или г/моль. Молярная масса, выраженная в г/моль, численно равна относительной относительной молекулярной массе Mr (для веществ атомного строения – относительной атомной массе Ar).
Например, молярная масса метана CH4 определяется следующим образом:
Мr(CH4) = Ar(C) + 4 Ar(H) = 12+4 =16
M(CH4)=16 г/моль, т. е. 16 г CH4 содержат 6,02 1023 молекул.
Молярную массу вещества можно вычислить, если известны его масса m и количество (число молей) n, по формуле:
Молярная масса вещества
Соответственно, зная массу и молярную массу вещества, можно рассчитать число его молей:
Число молей
или найти массу вещества по числу молей и молярной массе:
m = n M
Необходимо отметить, что значение молярной массы вещества определяется его качественным и количественным составом, т. е. зависит от Mr и Ar. Поэтому разные вещества при одинаковом количестве молей имеют различные массы m.
Пример
Вычислить массы метана CH4 и этана С2H6, взятых в количестве n = 2 моль каждого.
Решение
Молярная масса метана M(CH4) равна 16 г/моль;
молярная масса этана M(С2Н6) = 2 12+6=30 г/моль.
Отсюда:
m(CH4) = 2 моль 16 г/моль = 32 г;
m(С2Н6) = 2 моль 30 г/моль = 60 г.
Таким образом, моль – это порция вещества, содержащая одно и то же число частиц, но имеющая разную массу для разных веществ, т. к. частицы вещества (атомы и молекулы) не одинаковы по массе.
моль (3739байт)
n(CH4) = n(С2Н6), но m(CH4) < m(С2Н6)
Вычисление n используется практически в каждой расчетной задаче.

Новое на сайте

>

Самое популярное