Домой Нарыв Дискретная модель. Open Library - открытая библиотека учебной информации Математическая модель аналоговая и дискретная

Дискретная модель. Open Library - открытая библиотека учебной информации Математическая модель аналоговая и дискретная

Система может быть дискретной или непрерывной по входам, по выходам и по времени в зависимости от того, дискретными или непрерывными являются множества U, У, Т соответственно. Под дискретным понимается конечное или счетное множество. Под непрерывным будем понимать множество объектов, для которого адекватной моделью служит отрезок, луч или прямая линия, т. е. связное числовое множество. Если система имеет несколько входов и выходов, то это значит, что соответствующие множества U, Т лежат в многомерных пространствах, т. е. непрерывность и дискрет­ность понимаются покомпонентно.

Удобство числового множества как модели реальных со­вокупностей объектов состоит в том, что на нем естественным образом определяются несколько отношений, формализующих реально встречающиеся отношения между реальными объектами. Например, отношения близости, сходимости формализуют понятия похожести, сходства объектов и могут быть заданы посредством функции расстояния (метрики) d(x, у) (например, d(x, y)= Іx-y І. Числовые множества являются упорядоченными: отношение порядка следования у) формализует предпочтение одного объекта другому. Наконец, над элементами числовых множеств определены естественные операции, например, линейные: х+у, х-у. Если для реальных объектов на входе и выходе также имеют смысл аналогичные операции, то естественным образом возникают требования к моделям (2.1) -(2.3): быть согласованными с этими операциями, сохранять их результаты. Так мы приходим, например, к линейным моделям: , du/dt = ay + bu и т.д., являющимся простейшими моделями многих процессов.

Как правило, дискретность множества U влечет за собой дискретность Y . Кроме того, для статических систем исчезает разница между непрерывным и дискретным временем. Поэтому классификация детерминированных систем по признакам «статические - динамические», «дискретные - непрерывные» включает шесть основных групп, представленных в табл. 1.3, где для каждой группы указан математический аппарат описания систем, методы численного анализа и оценки их параметров, методы синтеза (оптимизации), а также типичные области применения.



Пример 1. Рассмотрим работу турникета на входе в метро. В первом, «грубом» приближении множество значений входа этой системы имеет два элемента: человек с жетоном (u 1) и человек без жетона , т.е. U={ u 1 }. После небольшого размышления становится ясно, что следует включить еще отсутствие пассажира (u 0), т.е. U ={u 0 , u 1 , }. Множество значений выхода содержит элементы «открыто» (y 0) и «за­крыто» (y 1). Таким образом, Y={y 0 , y 1 } и система является дискретной. В простейшем случае можно пренебречь памятью системы и описывать ее статической моделью, имеющей вид таблицы или графа:

При необходимости хранить ММ системы в ЭВМ ее можно представить (закодировать) в виде матрицы или более экономно, в виде списка (0, 0, 1), в котором на i -м месте стоит j , если значению входа соответствует значение выхода y i .

Пример 2. Если нас интересует более детально устройство самого турникета (т.е. системой является турникет), то придется учесть, что входными воздействиями (сигналами) для него являются опускание пятака и прохождение человека через турникет. Таким образом, система имеет два входа, каждый из которых может принимать два значения («есть» или «нет»).


Пренебрегая возможностью одновременного опускания жетона и прохождения, вводим три значения входа: и 0 - «нет воздействия», и 1 - «опускание жетона», и 2 - «прохождение». Множество Y можно задать так же, как и в примере 1. Однако теперь значение выхода y (t )не определяется только значением входа и (t ),а зависит еще и оттого, был ли опущен жетон раньше, т.е. от значений u(s) при sСистема имеет «память». Простейший тип ММ для описания дискретных систем с памятью - это конечный автомат . Для его построения вводится конечное множество внутренних состояний системы X , определяющее «память». В данном случае в X достаточно включить два элемента х 0 - «жетон не был брошен», x 1 - «жетон был брошен». Значения состояния системы в следующий момент времени I выхода в текущий момент зависят от текущих значений состояния и входа, т.е.

x (k+1)=F (x(k), и (k)), y (k) = G (x(k), и (к)), (2.4]

где k - номер момента времени такта. Отметим, что, выделив «текущий» и «следующий» моменты времени, мы незаметно ввели предположение о дискретности времени, которое при более детальном исследовании может оказаться неправомерным см. ниже п. 2.2.3). Функцию переходов F (х, и)и функцию выходов G (x, и )можно задать таблично:


Можно также построить графы переходов и выходов:

Пример 3. Рассмотрим простейшую электрическую цепь - RС -цепочку (рис. 1.6). Входом системы является напряжение источника u(t )=E 0 (t ), выходом - напряжение на конденсаторе y (t )=E 1 (t ). Закон Ома дает ММ системы в виде диф­ференциального уравнения 1-го порядка

у=и - у ,(2.5)

где -RC - постоянная времени цепочки. ММ (2.5) полностью непрерывна: U==Y=T=R 1 . Если исследователя ин­тересует поведение системы в статических режимах, т.е. при E 0 (t )= const, то нужно положить в (2.5) у= 0и получить статическую модель

y (t )=u (t ).(2.6)

Моделью (2.6) можно пользоваться как приближенной в I случае, когда вход E 0 (t )изменяется достаточно редко или медленно (по сравнению с ).

Пример 4. Рассмотрим экологическую систему, состоящую из двух взаимодействующих популяций ,существующих на некоторой территории. Предположим, что система автономна, т.е. внешними воздействиями (входами) можно пренебречь; за выходы системы примем численности популя­ций (видов) y 1 (t ), y 2 (t ). Пусть 2-й вид является пищей для 1-го, т.е. система относится к классу «хищник - жертва» (например, у 1 - численность лис в лесу, а у 2 - численность зайцев; или у 1 - концентрация бактерий-возбудителей заболевания в городе, а у 2 - число заболевших и т.д.). В дан­ном случае у 1 , у 2 - целые числа и, на первый взгляд, в ММ системы множество Y должно быть дискретным. Однако для построения ММ удобнее считать, что у 1 , у 2 могут принимать произвольные вещественные значения, т.е. перейти к непрерывной модели (при достаточно больших у 1 , у 2 этот переход не внесет существенной погрешности). При этом мы сможем пользоваться такими понятиями, как скорости изменения выходных переменных у 1 , у 2 . Простейшая модель динамики по­пуляции получается, если предположить, что:

При отсутствии хищников численность жертв растет экспоненциально;

При отсутствии жертв численность хищников убывает экспоненциально;

Численность «съеденных» жертв пропорциональна величине у 1 , у 2 .

При этих предположениях динамика системы, как нетрудно видеть, описывается так называемой моделью Лотки - Вольтерра:

где а, Ь, с, d - положительные параметры. Если есть возможность изменять параметры, то они превращаются во входные переменные, например, когда изменяются коэффициенты рождаемости и смертности видов, коэффициенты размножения бактерий (при введении лекарств) и т.д.

модель материальный скачкообразный дискретный

Будем предполагать, что возможно, хотя бы в принципе, установить и на некотором языке описания (например, средствами математики) охарактеризовать зависимость каждой из выходных переменных от входных. Связь между входными и выходными переменными моделируемого объекта в принципе может характеризоваться графически, аналитически, т.е. посредством некоторой формулы общего вида, или алгоритмически. Независимо от формы представления конструкта, описывающего эту связь, будем именовать его оператором вход-выход и обозначать через В.

Пусть М=М(X,Y,Z), где X - множество входов, Y - выходов, Z - состояний системы. Схематически можно это изобразить: X Z Y.

Рассмотрим теперь наиболее существенные с точки зрения моделирования внутренние свойства объектов разного класса. При этом придется использовать понятие структура и параметры моделируемого объекта. Под структурой понимается совокупность учитываемых в модели компонентов и связей, содержащихся внутри объекта, а после формализации описания объекта - вид математического выражения, которое связывает его входные и выходные переменные (например: у=au+bv). Параметры представляют собой количественные характеристики внутренних свойств объекта, которые отражаются принятой структурой, а в формализованной математической модели они суть коэффициенты (постоянные переменные), входящие в выражения, которыми описывается структура (а и b).

Непрерывность и дискретность.

Все те объекты, переменные которых (включая, при необходимости, время) могут принимать несчетное множество сколь угодно близких друг к другу значений называются непрерывными или континуальными. Подавляющее большинство реальных физических и теоретических объектов, состояние которых характеризуется только макроскопическими физическими величинами (температура, давление, скорость, ускорение, сила тока, напряженность электрического или магнитного полей и т.д.) обладают свойством непрерывности. Математические структуры, адекватно описывающие такие объекты, тоже должны быть непрерывными. Поэтому при модельном описании таких объектов используется главным образом, аппарат дифференциальных и интегро-дифференциальных уравнений. Объекты, переменные которых могут принимать некоторое, практически всегда конечное число наперед известных значений, называются дискретными. Примеры: релейно-контактные переключательные схемы, коммутационные системы АТС. Основой формализованного описания дискретных объектов является аппарат математической логики (логические функции, аппарат булевой алгебры, алгоритмические языки). В связи с развитием ЭВМ дискретные методы анализа получили широкое распространение также для описания и исследования непрерывных объектов.

Свойство непрерывности и дискретности выражается в структуре множеств (совокупностей), которым принадлежат параметры состояния, параметр процесса и входы, выходы системы. Таким образом, дискретность множеств Z, Т, Х, Y ведет к модели, называемой дискретной, а их непрерывность -- к модели с непрерывными свойствами. Дискретность входов (импульсы внешних сил, ступенчатость воздействий и др.) в общем случае не ведет к дискретности модели в целом. Важной характеристикой дискретной модели является конечность или бесконечность числа состояний системы и числа значений выходных характеристик. В первом случае модель называется дискретной конечной. Дискретность модели также может быть как естественным условием (система скачкообразно меняет свое состояние и выходные свойства), так и искусственно внесенной особенностью. Типичный пример последнего - замена непрерывной математической функции на набор ее значений в фиксированных точках.

Непрерывные математические модели

Для реализации ММ, представляемых ДУЧП или системами ОДУ, используются численные методы непрерывной математики, поэтому рассмотренные ММ называют непрерывными.

На рис. 1 показаны преобразования непрерывных ММ в процессе перехода от исходных формулировок задач к рабочим программам, представляющим собой последовательности элементарных арифметических и логических операций. Стрелками 1, 2 и 3 показаны переходы от описания структуры объектов на соответствующем иерархическом уровне к математической формулировке задачи. Дискретизация (4) и алгебраизация (5) ДУЧП по пространственным переменным осуществляются методами конечных разностей (МКР) или конечных элементов (МКЭ). Применение МКР или МКЭ к стационарным ДУЧП приводит к системе алгебраических уравнений (АУ), а к нестационарным ДУЧП--к системе ОДУ. Алгебраизация и дискретизация системы ОДУ по переменной t осуществляются методами численного интегрирования. Для нелинейных ОДУ (6) это преобразование приводит к системе нелинейных АУ, для линейных ОДУ (7) -- к системе линейных алгебраических уравнений (ЛАУ). Нелинейные АУ решаются итерационными методами. Стрелка 8 соответствует решению методом Ньютона, основанному на линеаризации уравнений, стрелка 9--методами Зейделя, Якоби, простой итерации и т. п. Решение системы ЛАУ сводится к последовательности элементарных операций (10) с помощью методов Гаусса или LU-разложения.

Рис. 1

Непрерывные ММ и используемые для их анализа методы вычислительной математики получили широкое распространение в САПР различных отраслей промышленности.

Создание методики автоматического формирования математических моделей систем позволило автоматизировать процедуры анализа и верификации широкого класса технических объектов. Инвариантный характер этой методики обусловил разработку на ее основе методов и алгоритмов, реализованных во многих ПМК проектирования электронных, механических, гидравлических, теплоэнергетических устройств и систем. Известны такие методы формирования ММ как узловой метод, контурный метод, метод переменных состояния.

Дискретные математические модели

Дискретной математической моделью называется модель, в которой выполнена дискретизация тех или иных переменных. Рассмотрим ММ, в которых дискретными являются зависимые переменные, характеризующие состояние моделируемого объекта.

Проектирование систем на функционально-логическом и системном уровнях основано на применении дискретных ММ. При моделировании в подсистемах функционально-логического проектирования принимаются те же допущения, что и при моделировании аналоговых систем на верхних уровнях. Кроме того, моделируемый объект представляется совокупностью взаимосвязанных логических элементов, состояния которых характеризуются переменными, принимающими значения в конечном множестве. В простейшем случае это множество {0, 1}. Непрерывное время t заменяется дискретной последовательностью моментов времени tк, при этом длительность такта. Следовательно, математической моделью объекта является конечный автомат (КА). Функционирование КА описывается системой логических уравнений КА

На системном уровне проектирования систем преимущественно распространены модели систем массового обслуживания (СМО). Для таких моделей характерно то, что в них отображаются объекты двух типов--заявки на обслуживание и обслуживающие аппараты (ОА). При проектировании ВС заявками являются решаемые задачи, а обслуживающими аппаратами--оборудование ВС. Заявка может находиться в состоянии «обслуживание» или «ожидание», а обслуживающий аппарат--в состоянии «свободен» или «занят». Состояние СМО характеризуется состояниями ее ОА и заявок. Смена состояний называется событием. Модели СМО используются для исследования процессов, происходящих в этой системе при подаче на входы потоков заявок. Эти процессы представляются последовательностями событий. По результатам исследования определяются наиболее важные выходные параметры системы: производительность, пропускная способность, вероятность и среднее время решения задач, коэффициенты загрузки оборудования.

Появление параллельных и конвейерных систем, необходимость моделировать процессы функционирования не только аппаратных, но и программных средств привело к появлению класса дискретных ММ, называемых сетями Петри. Сети Петри можно использовать для моделирования на функционально-логическом и системном уровнях проектирования широкого круга систем и сетей.

Сети Петри и СМО широко используются для описания функционирования производственных участков, линий и цехов, ориентированных на многономенклатурное производство изделий. Сети Петри -- эффективный инструмент разработки самих САПР. Эти сети могут служить моделями алгоритмов функционирования различных устройств дискретной автоматики.

Дискретность КА-модели по пространству является преимуществом с точки зрения математики и вычислительных процедур. Но с точки зрения практических приложений это является недостатком. Порой в фокусе исследования оказываются изменения ширины проема, коридора в пределах 5-15 см на объекте. В силу большего размера ячейки, КА-модели являются нечувствительными к таким изменениям линейных размеров объекта. Возникают проблемы с «расстановкой» мебели в таком дискретном пространстве (например, это актуально для детского сада, где размеры мебели в большинстве случаев не оказываются кратными размеру ячейки, при этом площади помещений весьма ограничены). Также в КА-моделях затруднительным является задание разных размеров и форм частицам.

Кроме того, в дискретной модели движение частицы может осуществляться только в одном из четырех направлениях, так как поле разделено на ячейки.

Минусом непрерывного подхода является то, что он основан на том, что движение людей описывается при помощи дифференциальных уравнений. Довольно сложным является определение правых частей этих уравнений .

Помимо этого существуют и положительные стороны этих моделей. Дискретная модель позволяет воспроизводить различные явления физического аспекта движения людей: слияние, переформирование (растекание, уплотнение), неодновременность слияния потоков, образование и рассасывание скоплений, обтекание поворотов, движение в помещениях с развитой внутренней планировкой, противотоки и пересекающиеся потоки. Предусмотрена возможность учета изменения видимости, информированности людей с планировкой здания, заблаговременного обхода препятствия, использование различными стратегиями движения (кратчайшего пути и кратчайшего времени) . А непрерывные модели позволяют учитывать массу и скорость отдельного человека (то есть его физические параметры). И в этой модели нет никаких ограничений на направление и длину шага .

Содержание задач, связанных с расчетом эвакуации, накладывает определенные требования к математическому аппарату, который следует использовать для моделирования процесса эвакуации. В последнее время частым явлением стали расчетные случаи, включающие помещения с развитой внутренней инфраструктурой (лекционные и зрительные залы, учебные классы, торговые залы и т.п.), важен учет уникальных физических параметров (включая возраст).

Объединение преимуществ обеих моделей позволило перейти на новую ступень в изучении движения людского потока. Появившаяся новая модель носит название полевой дискретно-непрерывной модели эвакуации «SigMA.DC» (Stochastic field Movement of Artificially People Intelligent discrete-continuous model - стохастическая полевая непрерывно-дискретная модель движения людей с элементами искусственного интеллекта).

Эта модель учитывает зависимость скорости человека от плотности, возраста, эмоционального состояния, группы мобильности. Она является непрерывной по пространству в выбранном направлении, но предполагается лишь конечное число направлений, куда может сдвинуться человек из текущей позиции .

В таблице 1 сведены наиболее значимые, по мнению многих исследователей, критерии для выбора математической модели, а также сравнительный анализ трех моделей из Методики расчета пожарного риска (Приложение к Приказу МЧС России N382 от 30.06.2009 ) и полевой модели эвакуации SigMA.DC. Приведенный список возник исходя из необходимости наиболее близко к реальному воспроизводить сценарии эвакуации из научных и образовательных учреждений со свойственной им спецификой: движение людей в помещениях с развитой инфраструктурой, различные роли (последовательность предписанных действий) отдельных эвакуирующихся, уникальные физические параметры (включая возраст), различный уровень информированности о правилах пожаробезопасности и планировки зданий, изменяющийся уровень видимости. Так же интересовал вопрос расширяемости модели для интеграции с моделями развития опасных факторов пожара.

Таблица 1 - Сравнительный анализ моделей упрощенной аналитической, индивидуально-поточной, имитационно-стахостической и полевой - SigMA.DC моделей эвакуации.

Критерии

Переформирование потока (растекание, уплотнение)

Слияние потоков

Неодновременность слияния

Расчленение

Образование и рассасывание скоплений

Учет неоднородности людского потока (вариабельность физического и эмоционального состояния)

Движение в помещении с развитой внутренней планировкой

Движение по участкам «неограниченной» ширины

Учет особенностей выбора людьми маршрутов эвакуации

Учет индивидуальных сценариев эвакуации (выполнение инструкций, задание ролей)

Учет противотоков и пересекающихся потоков

Учет условий видимости

Анализ данных из таблицы показывает, что подавляющее преимущество имеет полевая модель SigMA.DC.

Именно эта модель и является объектом изучения данной работы.

Реальные физические объекты функционируют в непрерывном времени, и для изучения многих проблем физических систем их модели должны быть непрерывными . Состояние таких моделей изменяется непрерывно во време­ни. Это модели движения в реальных координатах, модели химического производства и т. п. Процессы движения объектов и процессы перекачки нефти в модели нефтеналивного порта являются непрерывными.

На более высоком уровне абстракции для многих систем адекватными яв­ляются модели, в которых переходы системы из одного состояния в другое можно считать мгновенными, происходящими в дискретные моменты вре­мени. Такие системы называются дискретными . Примером мгновенного пе­рехода является изменение числа клиентов банка или количества покупате­лей в магазине. Очевидно, что дискретные системы - это абстракция, процессы в природе не происходят мгновенно. В реальный магазин реаль­ный покупатель входит в течение некоторого времени, он может застрять в дверях, колеблясь, войти или нет, и всегда существует непрерывная после­довательность его положения во время прохождения дверей магазина. Одна­ко при построении модели магазина для оценки, например, средней длины очереди в кассу при заданном потоке покупателей и известных характери­стиках обслуживания кассиром клиентов можно абстрагироваться от этих второстепенных явлений и считать систему дискретной: результаты анализа полученной дискретной модели обычно достаточно точны для принятия обоснованных управленческих решений для подобных систем. В модели неф­теналивного порта мгновенными можно считать, например, переходы свето­форов на входе в гавань из состояния "запрещено" в состояние "разрешено". На еще более высоком уровне абстракции при анализе систем также ис­пользуются непрерывные модели, что характерно для системной динамики. Потоки машин на автострадах, потребительский спрос, распространение инфекции среди населения часто удобно описывать с помощью взаимозави­симостей непрерывных переменных, описывающих количества, интенсивно­сти изменения этих количеств, степени влияния одних количеств на другие. Соотношения таких переменных выражаются обычно дифференциальными уравнениями.

Во многих случаях в реальных системах присутствуют оба типа процессов, и если оба они являются существенными для анализа системы, то и в модели одни процессы должны представляться как непрерывные, другие - как дискретные. Такие модели со смешанным типом процессов называются гиб­ридными. Например, если при анализе функционирования магазина сущест­венным является не только количество покупателей, но и пространственное их положение и перемещение покупателей, то модель в этом случае должна представлять смесь непрерывных и дискретных процессов, т. е. это гибрид­ная модель. Другим примером может служить модель функционирования крупного банка. Поток инвестиций, получение и выдача кредитов в нор­мальном режиме описывается набором дифференциальных и алгебраических уравнений, т. е. модель является непрерывной. Однако существуют ситуа­ции, например дефолт (дискретное событие), в результате чего возникает паника у населения, и с этого момента система описывается совершенно другой непрерывной моделью. Модель данного процесса на том уровне аб­стракции, на котором мы хотим адекватно описать оба режима работы банка и переход между режимами, должна включать как описание непрерывных процессов, так и дискретные события, а также их взаимозависимости.

Пакет AnyLogic поддерживает описание как непрерывных, так и дискрет­ных процессов, а также строить гибридные модели.. AnyLogic позволяет реализовать модель, фактически, на любом уровне абстракции (детальности). Выполнение гибридных моде­лей в AnyLogic основано на современных результатах теории гибридных динамических систем.

Дискретные модели. Однако деление систем на непрерывные и дискретные во многом произвольно зависит от цели и глубины исследования. Часто непрерывные системы приводятся к дискретным при этом непрерывные параметры представляются как дискретные величины путем введения разного рода шкал балльных оценок и т. Дискретные системы изучаются с помощью аппарата теории алгоритмов и теории автоматов.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Дискретные модели относятся к системам, все элементы которых, а также связи между ними (т. е. обращающаяся в системе информация) имеют дискретный характер. Следовательно, все параметры такой системы дискретны.

Непрерывные модели. Противоположное понятие — непрерывная система. Однако деление систем на непрерывные и дискретные во многом произвольно, зависит от цели и глубины исследования. Часто непрерывные системы приводятся к дискретным (при этом непрерывные параметры представляются как дискретные величины путем введения разного рода шкал, балльных оценок и т. п.). Дискретные системы изучаются с помощью аппарата теории алгоритмов и теории автоматов. Их поведение может описываться с помощью разностных уравнений.

Другие похожие работы, которые могут вас заинтересовать.вшм>

16929. Дискретные математические модели в профессиональной подготовке студентов экономических специальностей ВУЗов 10.92 KB
Дискретные математические модели в профессиональной подготовке студентов экономических специальностей ВУЗов Сложившаяся в настоящее время практика преподавания курса Дискретная математика для студентов экономических специальностей ВУЗов приводит к тому что они фактически не обладают знаниями и умениями позволяющими успешно решать широкий круг практических задач использующих дискретные объекты и модели не имеют развитого логического мышления у них отсутствует культура алгоритмического мышления. Для восполнения указанных пробелов...
15214. ЦИФРОВЫЕ И ДИСКРЕТНЫЕ СИГНАЛЫ 97.04 KB
Обработкой сигнала называют процесс преобразования сигнала исходящего от источника информации с целью освобождения от различного рода помех и от информации вносимой косвенным характером измеряемого физического процесса и нелинейными характеристиками датчиков а также с целью представления полезной информации в наиболее удобной форме. С учетом математической модели сигнала и задач обработки строится математическая модель процесса ЦОС. Классы моделей систем ЦОС отличаются по видам решаемых задач...
15563. СПЕЦИАЛЬНЫЕ ДИСКРЕТНЫЕ СЛУЧАЙНЫЕ ПРОЦЕССЫ 58.05 KB
Модель авторегрессии выражает текущее значение процесса через линейную комбинацию предыдущих значений процесса и отсчета белого шума. Название процесса – термин математической статистики где линейная комбинация x = 1y1 2 y2 p yp z = z Ty связывающая неизвестную переменную x с отсчетами y = T называется моделью регрессии x регрессирует на y. Для стационарности процесса необходимо чтобы корни k характеристического уравнения p 1p-1 p =0 лежали внутри круга единичного круга I 1 . Корреляционная...
16918. Дискретные структурные альтернативы: методы сравнения и следствия для экономической политики 11.74 KB
Дискретные структурные альтернативы: методы сравнения и следствия для экономической политики Современная экономическая теория в своей основе даже если далеко не всегда есть основания идентифицировать специфические черты соответствующей исследовательской программы является теорией индивидуального выбора что обусловливает высокий статус принципа методологического индивидуализма в исследованиях посвященных самым разнообразным проблемам Шаститко 2006. Индивидуальный выбор строится на таких фундаментальных основаниях как ограниченность...
3111. Инвестиции и сбережения в кейнсианской модели. Макроэкономическое равновесие в модели “кейнсианский крест” 27.95 KB
Инвестиция – это функция ставки процента: I=Ir Эта функция убывающая: чем выше уровень процентной ставки тем ниже уровень инвестиций. По взглядам Кейнса сбережения – это функция доходаа не процентной ставки: S=SY Т. инвестиции являются функцией процентной ставки а сбережения – функцией дохода.
5212. Уровни модели OSI и TCP/IP 77.84 KB
Сетевая модель - теоретическое описание принципов работы набора сетевых протоколов, взаимодействующих друг с другом. Модель обычно делится на уровни, так, чтобы протоколы вышестоящего уровня использовали бы протоколы нижестоящего уровня
8082. Модели элементов 21.98 KB
Совокупность элементов модели дискретного устройства называется базисом моделирования. Очень часто базис моделирования не совпадает с элементным базисом. Обычно из более сложной модели базиса моделирования можно получить более простую модель. В данном случае совпадение 2х соседних итераций является критерием окончания моделирования одного входного набора.
2232. Цветовые модели 475.69 KB
О работе с цветом Свойства цвета и соответствие цветов Цветовой круг и дополнительные цвета Цветовой круг демонстрирует соотношение между тремя первичными цветами красным зеленым и синим и тремя первичными цветами голубым пурпурным и желтым. Цвета расположенные друг напротив друга называются дополнительными цветами. Если вы сделали фотографию в которой избыток зеленого цвета то этот эффект можно подавить добавив соответствующий дополнительный цвет пурпурный смесь красного и синего согласно модели RGB. Дополнительный цветовой...
7358. Модели обучения 16.31 KB
Традиционное обучение представляет собой обучение ЗУН по схеме: изучение нового - закрепление - контроль - оценка. Ученики выступают как объекты управления. Со стороны учителя преобладает авторитарно-директивный стиль управления и инициатива обучаемых чаще подавляется, чем поощряется
7155. Цвет и цветовые модели 97.22 KB
Чтобы успешно применять их в компьютерной графике необходимо: понимать особенности каждой цветовой модели уметь определять тот или иной цвет используя различные цветовые модели понимать как различные графические программы решают вопрос кодирования цвета понимать почему цветовые оттенки отображаемые на мониторе достаточно сложно точно воспроизвести при печати. Так как цвет может получиться в процессе излучения и в процессе отражения то существуют два противоположных метода его...

Новое на сайте

>

Самое популярное